Aurovertins F-H from the Entomopathogenic Fungus Metarhizium anisopliae¹

Miwa Azumi,[†] Kei-ichi Ishidoh,[‡] Hiroshi Kinoshita,[‡] Takuya Nihira,[‡] Fumio Ihara,[§] Tsuyoshi Fujita,[⊥] and Yasuhiro Igarashi^{*,†}

Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, The International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, National Institute of Fruit Tree Science, 92-24 Nabeyashiki, Shimo-kuriyagawa, Morioka, Iwate 020-0123, Japan, and Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan

Received September 14, 2007

Analysis of fermentation broth of the entomopathogenic fungus *Metarhizium anisopliae* has led to isolation of aurovertin D (1) and three new aurovertin-type metabolites, aurovertin F (2), aurovertin G (3), and aurovertin H (4). Their structures were determined on the basis of spectroscopic analyses and chemical conversions.

Aurovertins are secondary metabolites initially identified as toxic substances in fermentation broth of the fungus Calcarisporium arbuscula.² Aurovertins are of polyketide origin and are characterized by a 2,6-dioxabicyclo[3.2.1]octane ring system with a conjugated α -pyrone moiety.³ There have been five aurovertins (A-E) structurally elucidated to date. Relative and absolute configurations of aurovertin B were determined by spectroscopic analysis and total synthesis, respectively.^{4,5} Structures of aurovertins A, C, and D were determined on the basis of spectroscopic comparison with aurovertin B.³ Aurovertin E was also isolated from the fungus Albatrellus confluens.⁶ Aurovertin B binds to F1-ATPase and thus inhibits ATP synthesis and hydrolysis in mitochondorial enzyme systems.⁷ During our continuing investigation of bioactive microbial secondary metabolites, three new aurovertins, aurovertin F (2), aurovertin G (3), and aurovertin H (4), were isolated from the culture broth of the entomopathogenic fungus Metarizhium anisopliae HF260 along with previously reported aurovertin D (1). The structures of these compounds were determined by combined spectroscopic and chemical methods.

The producing strain *M. anisopliae* HF260 was isolated from a soil sample collected in Okinawa, Japan, by the baiting method.⁸ In the course of screening for plant growth regulating substances, the 1-butanol extract of strain HF260 inhibited seed germination of barnyard millet. Investigation of active principles led to the isolation of aurovertin D (1) and three new aurovertins. The major aurovertin produced by strain HF260 was aurovertin D (1). Compound **1** has an additional OH group at C-2 of aurovertin B, but the relative and absolute configurations are obscure. Therefore, the structural analysis of a series of aurovertins from our strain

Figure 1. Key NOESY correlations for 1a.

was started from **1**. The ¹H and ¹³C NMR data of **1** were identical to those reported in the literature.³ The relative configuration of **1** was elucidated by analyzing the NOESY spectrum of its acetate (**1a**). A NOESY correlation between H-2 and H-8 indicated the anti-relationship of H-2 and H-3, which was consistent with the large coupling constant between H-2 and H-3 (9.0 Hz). The key NOESY correlation was observed between the methyl of 2-OAc and the angular methyl at C-20, illustrating the preferable conformation where the 2-OAc group is oriented on the same side as Me-20 while Me-1 is on the opposite side. Accordingly, the relative configuration at C-2 was determined as depicted in Figure 1. Since the optical rotation of **1** shows a negative value of $[\alpha]^{23}_{D} - 55.7$ (*c* 0.5, EtOH) similar to aurovertin B {natural compound: $[\alpha]^{20}_{D} - 50.6$ (EtOH);⁴ synthetic compound: $[\alpha]^{27}_{D} - 57.9$ (*c* 0.125, EtOH)⁵}, it is clear that **1** has the same absolute configuration as aurovertin B.

Aurovertin F (2) was obtained as a yellow powder that analyzed for $C_{23}H_{30}O_8$ by HRFABMS and NMR data. The ¹H and ¹³C NMR spectra of 2 were similar to those of 1 except for the loss of the acetyl group. The upfield shift of H-5 clearly indicated that 2 was a deacetylated analogue of 1, which was supported by the observed HMBC correlations. Compound 2 was alternatively obtained by methanolysis of 1 in MeOH with K₂CO₃. Additionally, acetylation of 2gave the triacetate of which ¹H and ¹³C NMR spectra and the optical rotation were identical to those of acetate 1a prepared from 1.

Aurovertin G (3) had a UV spectrum nearly identical to that of 1, but the molecular formula indicated that compound 3 contained an additional oxygen atom. Since the downfield chemical shift of C-3 (δ 105.4) was characteristic of an acetal or hemiacetal carbon, it was clear that **3** had an OH rather than a hydrogen atom at C-3. This was also consistent with the quartet signal of H-2 and HMBC correlations of H-1 to C-3 and 3-OH (δ 3.60) to C-2 and C-3. The key NOESY correlations between H-2 and H-8, and Me-20 and 2-OAc, were observed in the NOESY spectrum of the acetate 3a, which was prepared from **3**. The optical rotation of **3** was $[\alpha]_D$ -47.4, a value similar to that of 1, suggesting that 3 has the same absolute configuration as 1, but the CD spectrum of 3 ($\Delta \epsilon_{222}$ -0.614, $\Delta\epsilon_{252}$ +0.391, $\Delta\epsilon_{353}$ -1.089) was somewhat different from that of 1 ($\Delta \epsilon_{213}$ +2.317, $\Delta \epsilon_{269}$ -3.128, $\Delta \epsilon_{361}$ -0.525). Then, we examined the CD spectra of the acetates 1a and 3a. The CD spectrum of **3a** showed a positive Cotton effect at 269 nm ($\Delta \epsilon$

10.1021/np070494e CCC: \$40.75 © 2008 American Chemical Society and American Society of Pharmacognosy Published on Web 01/23/2008

^{*} To whom correspondence should be addressed. Tel: +81-766-56-7500. Fax: +81-766-56-2498. E-mail: yas@pu-toyama.ac.jp.

[†] Toyama Prefectural University.

^{*} Osaka University.

[§] National Institute of Fruit Tree Science.

[⊥] Suntory Institute for Bioorganic Research.

	aurovertin F (2)		aurovertin G (3)			aurovertin H (4)	
position	$\delta_{\rm H}$, mult $(J \ {\rm Hz})^a$	$\delta_{\text{C}}{}^{b}$	$\delta_{\rm H}$, mult $(J {\rm Hz})^a$	$\delta_{ m C}{}^{b}$	HMBC	$\delta_{\rm H}$, mult $(J {\rm Hz})^a$	$\delta_{\text{C}}{}^{b}$
1	1.39 d (6.4)	22.2	1.36 d (6.4)	17.6	2, 3	1.37 d (6.4)	16.2
2	4.25 dq (9.0, 6.4)	65.7	4.15 q (6.4)	66.7	1, 3, 4	4.23 q (6.4)	64.9
3	3.81 d (9.0)	86.2	· · ·	105.4	2, 3		104.4
4		84.0		84.5			83.8
5	3.44 s	81.0	4.83 s	80.8	3, 4, 7, 24	3.55 d (5.2)	79.8
6		84.1		84.5			83.5
7	3.20 d (7.9)	76.4	3.35 d (8.0)	76.4	6, 8, 9	4.84 d (8.6)	74.4
8	4.10 dd (7.9, 6.2)	78.1	4.02 dd (8.0, 5.6)	78.0	7, 9, 10	4.11 dd (8.6, 7.0)	73.5
9	5.91 dd (14.3,6.2)	134.5	5.92 dd (13.9, 5.6)	133.5	8, 10, 11	5.71 dd (15.4, 7.0)	131.5
10	6.44 dd (14.3, 10.8)	131.6	6.46 ^c m	131.8	8, 9, 12	6.35 ^c m	131.2
11	6.48 dd (14.3, 10.8)	137.0	6.47 ^c m	136.8	9,13	6.43 ^c m	135.5
12	6.37 dd (14.3, 11.0)	132.1	6.37 ^c m	132.3	13, 14	6.42^{c} m	131.3
13	7.18 dd (14.9, 11.0)	135.6	7.17 dd (14.6, 10.8)	135.6	12, 14, 15	7.14 dd (15.1, 10.8)	134.6
14	6.36 d (14.9)	119.6	6.37 d (14.6)	119.6	13, 15, 16	6.37 d (15.1)	120.2
15		154.3		154.2			154.2
16		108.1		108.2			108.4
17		170.6		170.7			170.7
18	5.50 s	88.8	5.50 s	88.8	16, 17, 19	5.51 s	87.7
19		163.5		163.8			163.8
20	1.49 s	17.9	1.48 s	16.7	3, 4, 5	1.57 s	15.4
21	1.37 s	14.6	1.33 s	15.6	5, 6, 7	1.32 s	14.2
22	1.97 s	8.9	1.97 s	8.8	15, 16, 17	1.97 s	7.7
23	3.83 s	56.2	3.84 s	56.2	17	3.84 s	55.0
24				168.6 ^d			169.9 ^f
25			2.21 ^e s	20.7^{e}		2.10^{g} s	19.6 ^g
3-OH			3.60 br.s		2, 3		
5-OH						4.05 d (5.2)	

^a 400 MHz, CDCl₃. ^b 100 MHz, CDCl₃. ^c Overlapping signals. ^d 5-OCOCH₃. ^e 5-OCOCH₃. ^f 7-OCOCH₃. ^g 7-OCOCH₃.

+0.825) and negative Cotton effects at 231 ($\Delta \epsilon - 1.480$) and 351 nm ($\Delta \epsilon - 0.812$). This Cotton effect pattern was in good agreement with that of **1a** ($\Delta \epsilon_{233} - 0.451$, $\Delta \epsilon_{265} + 0.887$, $\Delta \epsilon_{350} - 0.467$), finally establishing that **1** and **3** have the same absolute configuration.

Aurovertin H (4) had the same molecular formula as 3. Comparison of the ¹H and ¹³C NMR spectra of 4 with those of 3 revealed the upfield shift of H-5 (δ 3.55) and the downfield shift of H-7 (δ 4.84), indicating that the C-7 OH group was acetylated. This was supported by the HMBC correlation from H-7 to the acetyl carbonyl (δ 169.9). Aurovertin H (4) was thus determined to be the regioisomer of 3. The NMR spectra and the optical rotation of the acetate derived from 4 were identical to those for the acetate **3a**, thereby confirming that 3 and 4 have the same relative and absolute configurations.

Experimental Section

General Experimental Procedures. Optical rotations were measured using a JASCO DIP-3000 polarimeter. CD spectra were recorded in EtOH on a JASCO J-720 spectropolarimeter. UV spectra were recorded on a Hitachi U-3210 spectrophotometer. IR spectra were recorded on a Shimadzu FTIR-300 spectrophotometer. NMR spectra were obtained on a JEOL JNM-LA400, a Bruker AV400 M, or a Bruker AVANCE 500 spectrometer. HRFABMS was measured on a JEOL JMS-HX110 spectrometer. Silica gel 60-C18 (Nakalai Tesque 250–350 mesh) was used for ODS column chromatography. HPLC separation was performed using a Cosmosil 5C18-AR-II (Nacalai Tesque Inc., 20×250 mm) with a photodiode array detector.

Microorganism. The entomopathogenic fungus *Metarhiziumanisopliae*HF260 was isolated from a soil sample collected in Okinawa, Japan, by using the baiting method.⁸ The isolated strain was identified as *M. anisopliae* according to its morphology. After the conidia had developed on PDA slants in test tubes at 25 °C, the strain was kept at -30 °C as a stock culture.

Fermentation. The strain *M. anisopliae* HF260 cultured on a potato dextrose agar medium (Difco Laboratories) was inoculated into 500 mL flasks each containing 100 mL of production medium consisting of soluble starch 2%, glucose 0.5%, glycerol 2%, Pharmamedia (Traders Protein) 1.5%, yeast extract (Difco Laboratories) 0.4%, and Diaion HP-20 (Mitsubishi Chemical Co.) 1%. The pH of the medium was adjusted

to 7.0 before sterilization. The inoculated flasks were cultured on a rotary shaker (200 rpm) at 30 °C for 5 days. For the isolation of aurovertins F and H, fermentation was continued for an additional 10 days.

Extraction and Isolation. A 5-day-old fermentation broth of strain HF260 (100 mL \times 20 flasks) was extracted with 1-butanol (100 mL per flask) on a rotary shaker (200 rpm) for an additional 1 h. The mixture was centrifuged at 6000 rpm for 10 min, and the organic layer was separated from the aqueous layer containing the mycelium. Evaporation of the solvent provided approximately 1 g of extract per 1 L of culture. The crude extract was subjected to reversed-phase ODS column chromatography with a step gradient of MeCN-0.15% KH₂PO₄ buffer solution (pH 3.5) (2:8, 3:7, 4:6, 5:5, 6:4, and 8:2 v/v). Evaporation of fractions 4 and 5, followed by extraction with EtOAc, provided 0.6 and 0.7 g of yellow powders, respectively. Final purification was conducted by reversed-phase HPLC separation with 35% MeCN in 0.15% KH₂PO₄ buffer solution (pH 3.5) to yield aurovertin D (1, 106 mg) from fraction 5 and aurovertins F (2, 7 mg), G (3, 30 mg), and H (4, 7 mg) from fraction 4.

Aurovertin F (2): yellow powder; $[α]^{25}_D$ -63.7 (*c* 0.07, EtOH); IR (KBr) 3430, 1680; UV (MeOH) $λ_{max}$ (log ε) 229 (4.07), 268 (4.31), 274 (4.32), 367 (4.29); ¹H and ¹³C NMR (Table 1); HRFABMS *m*/*z* [M + H]⁺ 435.2019 (calcd for C₂₃H₃₁O₈435.2023).

Aurovertin G (3): yellow powder; $[α]^{24}_D - 47.4$ (*c* 0.5, EtOH); IR (KBr) 3280, 1700; UV (MeOH) $λ_{max}$ (log ε) 230 (3.91), 268 (4.19), 274 (4.20), 366 (4.19); ¹H and ¹³C NMR (Table 1); HRESIMS *m*/*z* [M + Na]⁺ 515.1889 (calcd for C₂₅H₃₂O₁₀Na 515.1891).

Aurovertin H (4): yellow powder; $[α]^{25}_D$ –36.8 (*c* 0.5, EtOH); IR (KBr) 3430, 1690; UV (MeOH) $λ_{max}$ (log ε) 228 (3.97), 268 (4.11), 274 (4.12), 356 (3.98); ¹H and ¹³C NMR (Table 1); HRESIMS *m*/*z* [M + H]⁺ 493.2079 (calcd for C₂₅H₃₃O₁₀ 493.2068).

Conversion of Aurovertin D (1) to Aurovertin F (2). A mixture of 1 (10 mg) and K₂CO₃ (25 mg) in MeOH (1.5 mL) was stirred for 8 h at room temperature. The reaction mixture was diluted with water and loaded onto a column of Diaion HP-20 resin (Mitsubishi Chemical Co.). After washing with water, the column was eluted with methanol and the eluate was concentrated to yield 2 (7 mg). Its NMR data and HPLC retention time were in good agreement with those of natural 2. Optical rotation was $[\alpha]^{25}_{\rm D}$ –62.5 (*c* 0.2, EtOH).

Acetylation of Aurovertin D (1). A mixture of 1 (10 mg) and acetic anhydride (1 mL) in dry pyridine (1 mL) was stirred for 8 h at room temperature. The reaction mixture was quenched with ice–water

and extracted with EtOAc. The organic layer was successively washed with diluted aqueous HCl, saturated aqueous CuSO₄, saturated aqueous NaHCO₃, and brine and dried over anhydrous Na₂SO₄. The organic layer was concentrated in vacuo and purified by HPLC separation to give 2,7-diacetylaurovertin D (1a, 9 mg): $[\alpha]^{25}$ _D -79.6 (*c* 0.5, EtOH); CD (EtOH) $\Delta \epsilon_{233} = -0.451$, $\Delta \epsilon_{265} = +0.887$, $\Delta \epsilon_{350} = -0.467$; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (3H, s, H-21), 1.26 (3H, s, H-20), 1.44 (3H, d, J= 6.2 Hz, H-1), 1.97 (3H, s, H-22), 2.04 (3H, s, 2-OCOCH₃), 2.08 (3H, s, 7-OCOCH₃), 2.18 (3H, s, 5-OCOCH₃), 3.83 (3H, s, H-23), 3.97 (1H, d, J = 9.6 Hz, H-3), 4.28 (1H, dd, J = 8.7, 7.2 Hz, H-8), 4.83(1H, d, J = 8.7 Hz, H-7), 4.89 (1H, s, H-5), 5.33 (1H, dq, J = 9.6, 6.2 Hz, H-2), 5.51 (1H, s, H-18), 5.70 (1H, dd, J = 14.3, 7.2 Hz, H-9), 6.33 (1H, m, H-12), 6.37 (1H, d, J = 15.1 Hz, H-14), 6.38 (1H, m, H-11), 6.40 (1H, m, H-10), 7.12 (1H, dd, *J* = 15.0, 10.5 Hz, H-13); ¹³C NMR (100 MHz, CDCl₃) δ 8.9 (C-22), 15.1 (C-21), 17.3 (C-20), 18.4 (C-1), 20.7 (2-OCOCH₃), 20.7 (7-OCOCH₃), 21.3 (5-OCOCH₃), 56.2 (C-23), 67.3 (C-2), 74.8 (C-8), 75.1 (C-7), 81.0 (C-5), 82.7 (C-3), 82.9 (C-6), 84.1 (C-4), 89.0 (C-18), 108.2 (C-16), 120.0 (C-14), 131.9 (C-9), 132.8 (C-11), 133.4 (C-12), 135.4 (C-10), 136.5 (C-13), 154.2 (C-15), 163.6 (C-19), 169.5 (2-OCOCH₃), 169.7 (5-OCOCH₃), 169.7 (7-OCOCH₃), 170.5 (C-17); HRESIMS m/z [M + Na]⁺ 583.2149 (calcd for C₂₉H₃₆O₁₁Na 583.2155).

Acetylation of Aurovertin F (2). Aurovertin F (2) was acetylated in the same manner as described above. The NMR data and HPLC retention time of the acetate derived from 2 were identical to those data of 1a derived from aurovertin D (1). Optical rotation was $[\alpha]^{25}_{D}$ -82.8 (*c* 0.08, EtOH).

Acetylation of Aurovertin G (3). 2,7-Diacetylaurovertin G (3a) was prepared in the same manner as described above: $[\alpha]^{26}_{D} - 80.1$ (*c* 0.5, EtOH); CD (EtOH) $\Delta \epsilon_{231} - 1.480$, $\Delta \epsilon_{269} + 0.825$, $\Delta \epsilon_{351} - 0.812$; ¹H NMR (400 MHz, CDCl₃) δ 1.19 (3H, s, H-21), 1.41 (3H, s, H-20), 1.43 (3H, d, J = 6.3 Hz, H-1), 1.97 (3H, s, H-22), 2.08 (3H, s, 2-OCOCH₃), 2.10 (3H, s, 7-OCOCH₃), 2.20 (3H, s, 5-OCOCH₃), 3.83 (3H, s, H-23), 4.29 (1H, dd, J = 8.6, 7.1 Hz, H-8), 4.85 (1H, d, J = 8.6 Hz, H-7), 4.94 (1H, s, H-5), 5.39 (1H, q, J = 6.3 Hz, H-2), 5.50

(1H, s, H-18), 5.70 (1H, dd, J = 14.5, 7.1 Hz, H-9), 6.36 (1H, m, H-12), 6.37 (1H, d, J = 15.1 Hz, H-14), 6.39 (1H, m, H-11), 6.40 (1H, m, H-10), 7.16 (1H, dd, J = 14.9, 10.2 Hz, H-13); ¹³C NMR (100 MHz, CDCl₃) & 8.4 (C-22), 13.4 (C-1), 15.3 (C-21), 16.3 (C-20), 20.1 (2-OCOCH₃), 20.1 (7-OCOCH₃), 20.7 (5-OCOCH₃), 55.6 (C-23), 69.0 (C-2), 74.8 (C-7), 75.0 (C-8), 80.2 (C-5), 83.1 (C-4), 84.3 (C-6), 88.4 (C-18), 104.0 (C-3), 107.8 (C-16), 119.6 (C-14), 131.0 (C-9), 132.6 (C-11), 133.3 (C-12), 134.7 (C-13), 135.8 (C-10), 153.6 (C-15), 163.0 (C-19), 167.6 (5-OCOCH₃), 169.0 (2-OCOCH₃), 169.2 (7-OCOCH₃), 170.0 (C-17); HRESIMS m/z [M + H]⁺ 577.2287 (calcd for C₂₉H₃₇O₁₂ 577.2279).

Acetylation of Aurovertin H (4). Aurovertin H (4) was acetylated in the same manner as described above. The NMR data and HPLC retention time of the acetate derived from 4 were identical to those data of 3a derived from aurovertin G (3). Optical rotation was $[\alpha]^{25}_{D}$ -80.5 (*c* 0.02, EtOH).

References and Notes

- Part 32 of the Bioactive Microbial Metabolites Series. Part 31: Igarashi, Y.; Trujillo, M. E.; Martínez-Molina, E.; Yanase, S.; Miyanaga, S.; Obata, T.; Sakurai, H.; Saiki, I.; Fujita, T.; Furumai, T. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3702–3705.
- (2) Baldwin, C. L.; Weaver, L. C.; Brooker, R. M.; Jacobsen, T. N.; Osborne Jr., C. E.; Nash, H. A. *Lloydia* **1964**, *27*, 88–95.
- (3) Steyn, P. S.; Vleggaar, R.; Wessels, P. L. J. Chem. Soc., Perkin Trans. 1 1981, 1298–1308.
- (4) Mulheirn, L. J.; Beechey, R. B.; Leworthy, D. P. J. Chem. Soc., Chem. Commun. 1974, 874–876.
- (5) Nishiyama, S.; Toshima, H.; Kanai, H.; Yamamura, S. *Tetrahedron* 1988, 44, 6315–6324.
- (6) Wang, F.; Luo, D.-Q.; Liu, J.-K. J. Antibiot. 2005, 58, 412-415.
- (7) (a) Van Raaij, M. J.; Abrahams, J. P.; Leslie, A. G. W.; Walker, J. E. *Proc. Natl. Acad. Sci. USA* 1996, 93, 6913–6917. (b) Ebel, R. E.; Lardy, H. A. J. Biol. Chem. 1975, 250, 4992–4995.
- (8) Ihara, F.; Toyama, M.; Sato, T. Appl. Entomol. Zool. 2003, 38, 461–465.

NP070494E